Processing Composite Samples from Training Ranges: Proposed Modifications to Method 8330

Alan D. Hewitt, Marianne E. Walsh and Thomas F. Jenkins

ERDC-CRREL Hanover, NH

Acknowledgements

- SERDP Bradley Smith, Dr. Jeff Marqusee and Robert Holst
- AEC John Buck and Martin Stutz
- CHPPM Barrett Borrey, Ken Mioduski, and Mike Brown
- EOD support teams
- Range control and base environmental personnel
- Sampling teams from ERDC, DRDC (Canada), USACHPPM, and Sacramento District Corps of Engineers

Presentation Objectives

* Implications of <0.6 mm Vs. <2 mm sample particle size cut off

* Processing of composite soil samples for the analysis of energetic residues

Challenge

- Obtaining "representative subsample" i.e., subsample containing particles in same proportions as bulk sample
 - Compositional Heterogeneity: difference in concentration between particles
 - <u>Distributional Heterogeneity</u>: nonrandom distribution of particles

Ft. Hood: Low-order residue filled crater

Hand Grenade Low-Order Detonations: Ft. Lewis

Propellant Fibers: Ft. Richardson

Rocket Propellant: 29 Palms

Subsampling Error

- Fundamental Error: i.e., compositional heterogeneity
 - subsample size relative to contaminant particle size
- Segregation Error: i.e., distributional heterogeneity
 - non-discrimination of particles (size, shape, density)

Anticipated RSDs from Laboratory Subsampling*

	Soil density 2.5 g/cm ³		
Particle Size	<u>15%</u>	<u>10%</u>	<u>5%</u>
0.5 mm	0.15 g	0.325 g	1.25 g
		0.5	4.0
1 mm	1.1 g	2.5 g	10 g
2	10.0	20 ~	90 ~
2 mm	10 g	20 g	80 g

*This is an approximation. Doesn't apply if analyte of interest exist as a few discrete "nuggets"

Labtech Essa Ring Mill: Composite Sample Grinding

Non-vegetated 60 seconds

Vegetated 90 seconds

Subsampling

- Evenly spread ground sample on flat surface
- Collect multiple (>20) increment from random locations
- 10 g or larger subsample recommend (extracted with twice the volume of acetonitrile)

Subsampling error – effect of grinding on standard deviation in hand grenade range soil (50 g subsamples of < 2 mm fraction)

Subsample	TNT Conc. mg/kg		RDX Cond	RDX Conc. mg/kg	
	Not Ground	Ground	Not Ground	Ground	
1	0.25	2.03	1.68	4.75	
2	1.81	2.04	1.77	4.71	
3	0.37	2.00	1.46	4.80	
4	1.48	2.03	3.80	4.73	
5	7.93	1.97	7.83	4.67	
6	0.56	2.00	1.81	4.66	
7	0.35	1.90	2.35	4.62	
8	0.75	2.02	2.51	4.62	
9	0.56	1.97	2.08	4.64	
10	0.35	1.98	1.98	4.69	
11	0.62	1.90	1.68	4.66	
12	5.62	1.91	13.0	4.60	
mean	1.72	1.98	3.50	4.68	
std dev	2.46	0.051	3.47	0.057	
RSD	143%	2.57%	99%	1.23%	

Comparison of Laboratory Subsample Duplicates

mg/kg

Subsamp	le Analyte	LD-1	 LD-2	RPD
SC-10	NG	0.53	0.12	130%
SC-10	HMX	2.5	2.7	7.7%
SC-21	TNT	13	13	0.0%
SC-21	RDX	34	34	0.0%
SC-21	HMX	5.4	5.2	3.8%
SC-32	NG	0.28	0.35	22%
PTA-5	NG	13	13	0.0%
PTA-13	NG	0.38	0.59	43%
PTA-13	2,4-DNT	0.52	0.85	48%
PTA-22	NG	15	13	14%
PTA-29	NG	3.2	3.2	0.0%
PTA-39	2,4-DNT	0.18	0.18	0.0%

Potential Remedies (propellant residues)

- Full sample extraction
- Increase grinding period to 5 min. (five separate 60 second grinds)

Case study: Pohakuloa Training Area & Scholfield Barracks

- 89 Split composite samples
- NG, 2,4-DNT, TNT, RDX, and HMX detected
- 93 potential pairs of values above 0.2 mg/kg
 - Contract laboratory reported 43 values that were below 0.2 mg/kg or were qualified as "j" (46% of potential pairs)
 - CRREL reported 1 value below 0.2 mg/kg (1.1% of potential pairs)

Fractionation study: 105-mm Howitzer Firing Point Samples

2,4-DNT mg/kg [mass-mg]

<u>Sample</u>	>2 mm	<2 to >0.6mm	<0.6 mm
A	<d *<="" [<d]="" td=""><td>1.9 [1.5]</td><td>0.42 [0.68]</td></d>	1.9 [1.5]	0.42 [0.68]
В	<d [<d]<="" td=""><td>3.3 [1.6]</td><td>0.51 [0.60]</td></d>	3.3 [1.6]	0.51 [0.60]
С	<d [<d]<="" td=""><td>1.4 [0.78]</td><td>0.50 [0.5]</td></d>	1.4 [0.78]	0.50 [0.5]

^{* &}lt;d below PQL

Fractionation study: Ft. Hood Crater Samples

RDX mg/kg [mass-mg]

Sample	<u>>2 mm</u>	<2 to >0.6mm	<0.6 mm
Crater A	NA *	0.86 [0.13]	5.14 [0.936]
Crater B	NA	367 [29.3]	1690 [181]

^{*} NA - Not analyzed (Chunks of explosives should be weighed)

Fractionation study: Ft. Lewis Hand Grenade Range

TNT mg/kg [mass-mg]

<u>Sample</u>	<u>>2 mm</u>	<2 to >0.6mm	<0.6 mm
2-1	0.21 [0.04]	1.36 [0.31]	0.81 [0.65]
2-2	0.02 [0.05]	21.0 [5.10]	2.71 [1.93]
2-3	0.36 [0.07]	3.28 [0.70]	0.55 [0.39]
2-4	0.18 [0.04]	0.42 [0.10]	2.41 [1.63]
2-5	0.30 [0.05]	5.72 [1.23]	1.65 [1.19]

Recommended Changes to Method 8330: Training Range Characterization

- Inclusion of all particles less than 2 mm
 - 10 mesh sieve Vs. 30 mesh sieve
- Mechanical Particle size reduction prior to subsampling (10 g subsamples)
 - Acquisition of grinder (Ring Mill grinder \$8K)
- Inclusion of NG
 - Dual (or multi) wavelength detector
- Pre-screening of sample extracts